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ABSTRACT : 

The macroscopic theory of elastic constants reported by Thurston and Bragger has been extended 

using the Piola-Kirchhoff stress tensor algebra to obtain the expression for the natural wave velocity in terms 

of second, third, fourth and fifth order elastic coupling coefficient. 
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INTRODUCTION : 

The analysis of experimental data of anharmonic properties is complicated due to the fact that the 

vibrational contribution contains coupling parameters of higher order than the contribution from the binding 

energy of the solid. In the long wave limits (Continua approximation) the vibrational contributions can be 

evaluated from the higher order elastic constants1-3 without the knowledge of the microscopy coupling 

parameters. As these higher order elastic constants are directly related to pressure derivatives of bulk and 

shear modulie4-6 which are needeed in study of condensed matter physics, geophysical and geochemical 

theories7-14 of the interior of earth. In this direction various theories have been proposed15-20 to study the 

higher order elastic constants by using the different forms of the binding energy. However, all these studies 

generally are limited to explain the elastic constants upto the fourth order of cubic structure solids. Out of all 

above theories 15-20 the lattice theory17 is more general and suitable as it can be used to explain the various 

physical properties of the cubic structure solids. 

Originally Srinivasan17 has developed a theory using the macroscopic theory of elasticity21 and the 

lattice theory22 to derive the general expression for TOE constants, piezo-elastic constants and strain optical 

constants of non primitive cubic structure solids using the pair potential form of the energy. This was further 

studied by Goyal et al.23 by using the many body potential24. 

Later on Goyal and Kumar25 extended the lattice theory17 by using the many body potential and the 

extended macroscopic theory26 to derive the experssions for the fourth order elastic constants of cubic 

structure solids. Now we are further extending the Srinivasan theory17 to derive the expression for fifth order 

http://www.jetir.org/


© 2018 JETIR June 2018, Volume 5, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1806905 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 716 
 

elatic constants of cubic structure solids. In the present study we are first extending the macroscopic theory 

earlier reported by Thurston and Bragger21 and Kumar and Goyal26 to derive the general expression for a 

natural wave velocity (W) which is available from experiments in terms of second, third, fourth and fifth 

order elastic constants. The deteil of the theory is given in the following section. 

EQUATION OF MOTION : 

Following the theory of mechanics of continua, the equation of motion of the material particle in a 

position in the absence of body forces in terms of Piola-Kirchoff stress tensor is given by : 

 jx
 = 

kj
kx




  ...(1.1) 

 kj
 = 

jk
pq

p j

x1 x
t

J a a




  ...(1.2) 

where xj is the coordinate of a particle in strained state ap is the coordinate of a material particle in the 

unstrained state tpq, is the second Piola-Kirchoff stress tensor, * be the stresses expressed in terms of Piola-

Kirchoff stress tensor and J is the jacobian of the deformation and if related as 

 J = 

0 k

p

x

a

 


 
 ...(1.3) 

where ρ is the density in the strain coordinate and ρ0 is the density in the unstrain coordinate 

On substituting τkj from equation (1.2) into equation (1.1) we have. 

 jx
 = 

jpk k
jp

k p p k

P1 x 1 x
P

x J a j a x

   
       ...(1.4) 

The first Piola-Kirchoff stress tensor Pjp in equation of motion (1.4) is a function of the entropy and 

the deformation gradient as 

 Pjp = 

j
pq

p

x
t

a

 
     ...(1.5) 

where  tpq = 

0 0
pq pqs T

U F    
           ...(1.6) 

here U and F are an internal and Helmholtz free energy per unit mass, ηpq is the Lagrangian strain, S 

and T denote entropy and temperature. 

In view of eq. (1.3), the eq. (1.4) becomes as 

 0 jx
 = 

jp

p

P

a




 ...(1.7) 
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ELASTIC WAVES IN STRAINED MEDIUM : 

Considering the propagation of small amplitude elastic waves in a homogeneously deformed medium, 

we assume Pjp in eq. (1.7) as a function of the entropy and the deformation gradient ∂xk/∂am. To obtain the 

linearized equation of motion, we expand Pjp about the initial state of coordinates xi, denoting the initial values 

by ~ over the symbols. 

jp jpP – P
 = 

s s sk k r k r l
jpkl jpkmrs jpkmrsld

m m s m s d

u 1 u u u u u
A A A

a 2 a a a a a

     
 

       ...(1.8) 

where ui = xi – Xi be the component of displacement from initial state due to the wave. Xi and Xi denotes 

coordinate in homogeneously final and initial state respectively. 

 
s
jpkmA

 = 

jp

k

m

P

X

a



 
     

 
s
jpkmrsA

 = 

2
jp

k r

m s

P

X x

a a



    
          

 
s
jpkmrsldA

 = 

3
jp

k r i

m s d

P

X x x

a a a



       
                ...(1.9) 

On substituting an eq. (1.8) into the eq. (1.7) and retaining upto third power’s of the displacement 

gradients ( uk/∂am). (∂ur/∂as). (∂ul/∂ad) we find the linearized equation of motion for uj in the following forms. 

0 jP u
 = 

2 2 2
s s sk k r k r l
jpkm jpkmrs jpkmrsld

p m p m s p m s d

u 1 u u 1 u u u
A A A

a a 2 a a a 6 a a a a

     
 

     
 ...(1.10) 

‘A’ COEFFICIENT : 

With the help of an equation (1.5), an equation (1.9a) forthe tensor 
s
jpkmA

 can be expressed in terms 

of the deformation gradients. 

 
s
jpkmA

 = 

j

p j
pq

k kq

m m

x

a x t
t

X xa

a a

 
 

    
    

          ...(1.11) 

Using tensor algebra above equation (1.11) can be written as 
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s
jpkmA

 = 

j pq
jk pm

kq

m

x t
t

xa

a

 
 

  
    ...(1.12) 

using the definitions of Lagrangian strain and its derivatives. 

 ij
 = 

k k
ij

i j

1 x x
–

2 a a

  
     ...(1.13) 

 

ij

k

q

x

a



 
    = 

k k
ij

i j

1 x x
–

2 a a

  
    ...(1.14) 

The ‘A’ coefficient in eq. (1.12) can be expressed with the help of an eq. (1.14) in terms of the 

deformation gradients and the derivatives of an internal energy with respect to the Lagrangian strain ηij as 

 
s
jpkmA

 = 

j sk
jk pm pqmi

q i

x x
t C

a a

 
 

 
 ...(1.15) 

Where 
s
pqmiC

 = 

2
pq

0
mi pq mis s

t U   
             ...(1.16) 

Similarly on putting the value of Pjp from an equation (1.5) into equation (1.9b) we get 

s
jpkmrsA

 = 

j j

2
q q j pq

pq
r k k k k rq

s m m m m s

x x

a a x t
t

x x x x x xa

a a a a a a

    
    

       
                

                                 

   ...(1.17) 

using tensor algebra above equation can be written as 

s
jpkmrsA

 = 

2
pq pq j pqj j q l q j p

r s m pq k m r s
r k k rq

s m m s

t t x t
t

x x x xq

a a a a

   
         

          
                     

   ...(1.18) 

Now using equation (1.14) we can write (1.18) as 

 
s
jpkmrsA

 = 

jj j q q sr
r s m pq m pqsnk

n

x
t C

a


     

  

jj q s sk k r
r s pqmi pqmisn

i q i n

xx x x
C C

a a a a

  
  

   
 ...(1.19) 
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Where 

 
s
pqmiC

 = 

2
pq

0
mi pq mis s

t U   
             

 
s
pqsnC

 = 

2
pq

0
sn pq sns s

t U   
             

 
s
pqmisnC

 = 

2
pq

0
mi sn pq mi sns s

t U   
               

   ...(1.20a-c) 

Similarly putting the value of Pjp from an eq. (1.5) into equation (1.9c) we get 

s
jpkmrsldA

 = 

j3
pq

q

k r i

m s d

x
t

a

x x x

a a a

 
  

 

       
                

s
jpkmrsldA

 = 

j j3 2
pq pq

q q

r k i r l k

s m d s d m

x x
t t

a a

x x x x x x

a a a a a a

    
     

    
                

                                 

j j2 2
pq pq

q q

r l k l r k

s d m d s m

x x
t t

a a

x x x x x x

a a a a a a

    
      

     
                

                                 

j j2 2

q qpq pq

k k r l r k l

m m s d s m d

x x

a at t

x x x x x x x

a a a a a a a

    
    

      
                   

                                       

j2
2

qpq pq

l k r k r l

d m s m s d

x

at t

x x x x x x

a a a a a a

 
  

   
                

                                   ...(1.21) 

using tensor algebra eq. (1.21) can be written as 
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s
jpkmrsldA

 = 

2 2
pq pqq j q jj q q q j q

r s m pq m r sk l d k
r l l k

s d d m

t t
t

x x x x

a a a a

 
           

          
                     

2
pq pq pqj q j q j j qj q q

r s ml d l d k l d
l k k r

s m m s

t t t

x x x x

a a a a

  
           

          
                     

3
pq j pqj q j q

m r sk
l k r lq

d m s d

t x t

x x x xa

a a a a

  
    

          
                       ...(1.22) 

where 

 

j

q

x

a

 
     = 

j
q  

 

pq

k

m

t

x

a



 
    = 

s k
pqmi

i

x
C

a



  

 

pq

l

d

t

x

a



 
    = 

s l
pqdz

z

x
C

a



  

 

pq

l

d

t

x

a



 
    = 

s l
pqdz

z

x
C

a



  

 

2
pq

k r

m s

t

x x

a a



    
          = 

sk r
pqmisn

i n

x x
C

a a

 

   

 

2
pq

r l

s d

t

x x

a a



    
          = 

sr l
pqsndz

n z

x x
. C

a a

 

   

 

2
pq

l k

d m

t

x x

a a



    
         = 

sl k
pqmidz

z i

x x
. C

a a

 

   

http://www.jetir.org/


© 2018 JETIR June 2018, Volume 5, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1806905 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 721 
 

 

3
pq

k r l

m s d

t

x x x

a a a



       
                = 

sk r l
pqmisndz

i n z

x x x
. . C

a a a

  

    ...(1.23) 

Now using eq. (1.14) we can write eq. (1.23) as 

 
s
jpkmrsldA

 = 

j j q jq j q q sr l
m r s pq m pqsndzk l d k

n z

x x
t . C

a a

 
        

   

j q sl k
r s pqmidz

z i

x x
. C

a a

 
 

   

 
s
jpkmrsldA

 = 

j j q jq j q q sr l
m r s pq m pqsndzk l d k

n z

x x
t . C

a a

 
        

   

j qj q s sl k l r k
r s pqmidz pqmisnl d

z i z n i

x x x x x
. . C . C

a a a a a

    
    

      

j q j j qj q s q sk r
r s pqmi m pqsnl d k l d

i n

x x
C C

a a

 
        

   

jj q j q s sl k r l
m r s pqdz pqmisndzk

z q i n z

xx x x x
C . . . C

a a a a a

   
    

    
 ...(1.24) 

where 

 
s
pqmiC

 = 

2
pq

0
mi pq mis s

t U   
             

 
s
pqsnC

 = 

2
pq

0
sn pq sns s

t U   
             

 
s
pqmisnC

 = 

2 3
pq

0
mi sn pq mi sns s

t U    
                 

 
s
pqmidzC

 = 

2 3
pq

0
dz mi pq dz mis s

t U    
                 

 
s
pqsndzC

 = 

2 3
pq

0
sn dz pq sn dzs s

t U    
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s
pqmisndzC

 = 

3
pq

mi sn dz s

t 
       

  = 

4

0
pq mi sn dz s

U 
         ...(1.25) 

ELASTIC COEFFICIENTS : 

In order to find the elastic constants (C-coefficients), the strain energy U can be expanded about the 

state of zero strain as 

0U  = 

jp,km jp,km,rsjp km jp km rs

jp,km jp,km,rs

1 1
C C

2 6
       

 

jp,km,rs,ld jp km rs ld

jp,km,rs,ld

1
C

24
    

 

jp,km,rs,ld jp km rs ld uv

jp,km,rs,ld,uv

1
C

120
     

  ...(1.26) 

Now the equation (1.26) is used in order to get the explicit expressions for 
s

pm pqmit ,C ,
 

s s s s s
pqsn pqmisn pqdz pqdzmi pqsndzC ,C ,C ,C ,C

 and 
s
pqmisndzC

 for this purpose we have used the following 

symmetric condition 

jp km rs ld uv     we get 

tpm = 

jp jp,km jp,km,rs,ldjp rs km rs km rs ld

rs rs km,rs

1
C C – C

2


       


  

 

jp,km,rs,ld,uv km rs ld uv

km,rs,ld,uv

1
C

2


     




  ...(1.27) 

s
pqmiC

 = 

jp,km jp,km jp,km,rs,ldjp ki rs rs ld

rs rs,ld

1
C C C

2


     


 

 

jp,km,rs,ld,uv rs ld uv

rs,ld,uv

1
C

6


   




 ...(1.28) 

s
pqsnC

 = 

jp,km jp,km,rs jp,km,rs,ldjp ks mm rs rs ld

rs rs,ld

1
C C C

2
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jp,km,rs,ld,uv rs ld uv

rs,ld,uv

1
C

6


   




 ...(1.29) 

s
pqdzC

 = 

jp,km jp,km,rs jp,km,rs,ldjp kd mz rs rs ld

rs rs,ld

1
C C C

2


      


 

 

jp,km,rs,ld,uv rs ld uv

rs,ld,uv

1
C

6


   




 ...(1.30) 

s
pqmisnC

= 

jp,km,rs jp,km,rs,ld jp,km,rs,ld,uvjp ki m ld id uv

rs ld,uv

C C C       
  

 
 ...(1.31) 

s
pqmidzC

 = 

jp,km,rs jp,km,rs,ld jp,km,rs,ld,uvjp ki rd sz ld id uv

rs ld,uv

C C C        
  

 
 

   ...(1.32) 

s
pqsndzC

 = 

jp,km,rs jp,km,rs,ld jp,km,rs,ld,uvjp mn rd kz ld id uv

rs ld,uv

C C C        
  

 
 

   ...(1.33) 

s
pqmisndzC

 = 

jp,km,rs,ld jp,km,rs,ldjp ki m lz uv

uv

C C     
  


 ...(1.34) 

ELASTIC WAVE : 

Now we assume plane sinusoidal waves in the form 

 Uj = 

i i
j

N a
A exp j t –

w

  
      ...(1.35) 

According to this expression, the wave front is a material plane which has unit normal N in the 

natural state and a wave front moves from the plane N.a = 0 at N.a = L0 in time Lo/W. Thus W is the wave 

speed reffered to natural dimensions and we call it the natural velocity for propagation normal to a plane of 

natural normal N. Deriving the equation for natural wave velocity (W) from ultra-sonic experiment be 

 W = 2 LoF ...(1.36) 

where F is repetition frequency 

The substitution of an equation (1.35) into linearized equation of motion (1.10) provides the 

following propagation condition of the wave 

 
2

0 jW u
 = 

s s
jpkm p m k jpkmrs p m s k r

1
A N N u A N N N u u

2


 

s
jpkmrsld p m s k r l

1
A N N N u u u

6
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 Np = pa




 

 Nm = ma



  

 Ns = sa



  

 Nd = da



  

When ‘A’ coefficients are defined by equations (1.15) and (1.19). 

On applying the symmetric conditions j k,p m, j r    (1.15), (1.19), (1.28) and (1.19a) 

became as 

A(jp),[rs],(km) = 

sr
jk qm pqsn

n

x
C

a


 

    ...(1.39) 

A(jp),[rs],(km) = 

jj jj q q s j q s sr k k r
r s pq m pqsn r s pqmi pqmisnk k

n i q i n

xx x x x
t C C C

a a a a a

   
         

    
 

A(jp),[rs](km) = 

js sr k r
jk qm pqsn pqmisn

n q i n

xx x x
C C

a a a a

  
  

   
 ...(1.40) 

A(jp),[rs],(ld),(km) = 

j j qq j i q s j q sr l l k
m r pq k m pqsndz r s pqmidzk i d

n z z i

x x x x
t C C

a a a a

   
          

     

jj q j q s sl k r l
m r s pqdz pqmisndzk

z q i n z

xx x x x
C C

a a a a a

   
    

    
  ...(1.41) 

A(jp),[rs](ld),(km) = 

j q s j q sr l l k
m pqsndz r s pqmidzk

n z r i

x x x x
C C

a a a a

   
    

     

j q jj q s q j q sk r
r s pqmi m r s pqsnl d k

i n

x x
C C

a a

 
        

   

jj q j q s sl k r l
m r s pqdz pqmisndzk

z q i n z

xx x x x
C C

a a a a a

   
    

    
 ...(1.42) 

A(jp),[rs],[ld],(km) = 

s sr l l k
jk qm pqsndz jr qs pqmidz

n z r i

x x x x
C C

a a a a
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s sk r
jr qs ji qd pqmi jk qm ji qd pqsn

i n

x x
C C

a a

 
        

   

js sl k r l
jk qm jr qs pqdz pqmisndz

z q l n z

xx x x x
C C

a a a a a

   
    

    
 ...(1.43) 

A(jp),[rs][ld],(km) = 

s sr l r
jk qm pqsndz jk qm jr qs pqsn

n z n

x x x
C C

a a a

  
      

    

js sl k r l
jk qm jr qs pqdz pqmisndz

z q i n z

xx x x x
C C

a a a a a

   
    

    
 ...(1.44) 

On substituting the value of tpm and 
s
pqmiC

 after neglecting the second-order term of the Lagrangian 

from eq. (1.27), (1.28) and Using eq. (1.13) becomes as 

A(jp),(km) = 

jp,km np,km,rskm rs jk jp ki qi qi

km

C C (2 )         
 

jp,km jp,km,rs rs

rs

(C C ) 
 ...(1.45) 

using the tensor algebra and neglecting the second-order of the Lagrangian in the eq. (1.47) we get 

A(jp),(km) = 

jp,km jp,km,rs jp,kmkm rs qi qi

km

C C 2 C     
 ...(1.46) 

Now using the following symmetric conditions in the 

jp ↔ km ↔ rs, j ↔ p, k ↔ m, r ↔ s, j ↔ m, q = i 

above equation we get 

A(jp),(km) = 

jp,km jp,km,rs pmrs jp,mk pi,mqjk rs jp kj

rs q q

C [C C ] C C        
 

   ...(1.47) 

similarly on substituting the value of 

sl
pqsn

z

x
C

a



  after neglecting the second-term of the Lagrangian 

from equation (1.29), 
s
pqmisnC

 from equation (1.31) and (1.13), the equation (1.40) becomes as 

 A(jp),[rs],(km) = 

jp,km jp,km,rsjk qm jq ks mn

rs

J C C       
 
 


 

jp,km,rs jp,km,rs,ldjk jq ki m qi qi ld

rs

J(2 ) C C         
 
 


 ...(1.48) 
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using the tensor algebra and neglecting the second order term of the Lagrangian in the above 

equation we have 

 A(jp),[rs],(km) = 

jp,km jp,km,rssn rs

rs

J C C   
  


 

jp,km,rs jp,km,rs,ld jp,km,rssn ld qi qi

ld

J C C 2 C       
  


 ...(1.49) 

Now using the following symmetric conditions in the 

Jp ↔ km ↔ rs ↔ ld,j ↔ p,k ↔ m,r ↔ s,l ↔ d,j ↔ m,q = i,n = r 

above equation we get 

A(jp),[rs],(km) = 

pm,rs jp,km,rs jp,km,rd,ld jp,rs,ldjk ld

ld

C C [C C ]    
 

jp,mk,rs jp,kq,rsjp kq

q ld

C [C ]    
 ...(1.50) 

Now on subsitituting the value of 
s
pqsnC

 after neglecting the second order term of the Lagrangian 

from equation (1.20), 
s
pqsndzC

 from equation (1.33), 
s
pqmisndzC

 from equation (1.34) and using eq. (1.3) 

and (1.13) eq. (1.44) become as 

A(np),[rs][ld],(km) = 

l
jp,km,rs jp,km,rs,ldjk qm jq mn ld

z ld

x
J C C

a


      

   


 

l
jp,km jp,km,rsjk qm jl ks mn rs

z ld

x
J C C

a


       

   


 

j k k l
jp,km,rs,ld jp,km,rs,ld,uvq ki m iz uv

q i k z uv

x x x x
J C C

a a a a

   
      

      


 ...(1.51) 

A(jp),[rs][ld],(km) = 

l
jp,km,rs jp,km,rs,ldjk qm jq mn ki ld

z ld

x
J C C

a


       

   


 

jp,km jp,km,rsjk qm ji qd jq ks mn rs

ld

J C C         
  


 

jp,km,rs,ld jp,km,rs,ld,uvjq qm m iz jk qi qi uv

rs

(2 ) C C          
  


 ...(152) 

Using the tensor algebra and neglecting the second order term of the Lagrangian in the above 

equation we have 
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 A(jp),[rs],[ld],(km) = 

l
jp,km,rs jp,km,rs,ldrd nz ld

z ld

x
J C C

a


    

   


 

jp,km jp,km,rsld jq sn rs

ld

J C C     
  


 

jp,km,rs,ld jp,km,rs,ld jp,km,rs,ld,uvjq m ld qi qi qi uv

rs

C 2 C C         
  


 ...(1.53) 

Now using the following symmetries conditions in the above equation 

Jp ↔ km ↔ rs ↔ ld ↔ uv,j ↔ p,k ↔ m,r ↔ s,l ↔ d,u ↔ v,l ↔ z,q = i,n = r 

 A(jp),[rs],[ld],(km) = jp,km jp,km,rs jp,km,rs,ld jqC C C  
 

jp,km,rs jp,km,rs,ld jp,km,rs,ld,uv uv

uv

[C C C ]  
 

jp,rs,ld,km jp,rs,ld,mqjq kq

q q

C C    
...(1.54) 

On simplifying equation (1.54) we get 

 A(jp),[rs],[ld],(km) = pm,rs pm,rs,ld jp,km,rs,ldC C C   

pl,md,uv pl,md,rs,uv jp,km,rs,ld,uvjk rs uv

uv

[C C C ]    
 

jp,rs,ld,km jp,rs,ld,mqjq kq

q q

C C    
 ...(1.55) 

CONCLUSION :  

The present derived propagation condition of a plane wave (equation-1.38) along with the equations 

of elastic constants derived by using lattice theory given by Born-Huang22 will be useful in deriving the 

expressions for up to the fifth order elastic constants of cubic structure solids are other related an harmonic 

properties of the solids. 
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